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Front explosions in three-dimensional resonantly-forced oscillatory systems
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~Received 9 April 2003; published 7 August 2003!

Interface dynamics in a three-dimensional coupled map lattice with a period-3 local map is studied. The
system possesses a parameter regime where one typically finds three-phase patterns consisting of spatially
uniform domains which follow the period-3 cycle and oscillate among the three different phases. The interfaces
where these domains meet may exhibit complex irregular dynamics. The system also has a parameter regime
of ‘‘turbulent’’ dynamics, which is a chaotic transient with a superexponentially long lifetime. The transition
from the three-phase pattern regime to the turbulent regime is studied. As a control parameter is tuned, the
interfaces between domains develop turbulent structure. The thickness of the turbulent zone remains finite up
to a critical parameter value after which it is infinite. We characterize this ‘‘front explosion’’ transition in
three-dimensional systems and compare it with the analogous transition in two-dimensional systems where the
critical properties are markedly different. The front explosion in the three-dimensional resonantly-forced
complex Ginzburg-Landau equation is also investigated briefly and its character differs from that in the
three-dimensional coupled map lattice.
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I. INTRODUCTION

If a nonlinear oscillatory medium is subjected to period
forcing with frequency near a multiple of the natural oscil
tion period, the forcing may lock the phase of the oscillatio
to discrete values. In this circumstance, the medium exhi
patterns consisting of spatially uniform domains separated
interfaces or domain walls where the phase of the oscilla
exhibits sharp jumps. Systems of this type arise in a num
of different physical contexts including liquid crystals in th
presence of magnetic fields@1–5#, instabilities in optical sys-
tems @6–9#, and oscillatory chemical media@10–13#. Such
studies of resonantly-forced oscillatory media have sho
that a complicated phenomenology of spatiotemporal p
terns exists.

Resonantly-forced systems may be described
‘‘reaction-diffusion’’ equations giving the time evolution o
local dynamical variablesx(r ,t),

]

]t
x~r ,t !5F„x~r ,t !,t…1D¹2x~r ,t !1hF„x~r ,t !,t…, ~1!

whereF„x(r ,t),t… specifies the local dynamics,D is a matrix
of diffusion or coupling coefficients, andhF is a periodic
external forcing term with amplitudeh. There have been
extensive studies of the resonantly-forced comp
Ginzburg-Landau~CGL! equation, as well as other reactio
diffusion models, which have provided schemes to interp
the experimental studies and predicted the existence of
phenomena@14–26#.

Insights into the behavior of resonantly-forced syste
can be gained by studying simpler but more abstract cou
map lattice~CML! models of the form
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wherest(r ) is the local state at the lattice siter at discrete
time t, f is a ~nonlinear! map function,D is the dimensional-
ity of the lattice, andN is the von Neumann neighborhoo
comprising the nearest neighbors of the siter . The parameter
e is proportional to the strength of the diffusive spat
coupling.

A series of investigations@27–30# of this CML model
with the piecewise linear map,

f ~s!5H bs, 0<s<1/b

a, 1/b,s<1,
~3!

demonstrated the existence of phenomena analogous to
seen in the resonantly-forced CGL equation. In particular,
an appropriate choice of the parametersa andb, the map has
a period-3 attractorA5a→B5ab→C5ab2, and models
the behavior of a 3:1 resonantly-forced system. An especi
interesting feature of the spatiotemporal dynamics in tw
dimensional~2D! systems is the existence of ‘‘turbulent
fronts where a turbulent zone separates any two of the th
homogeneousA, B, or C phases@28,29#. An example of such
a turbulent interface is shown in Fig. 1~left panel!. As the
system parameters are tuned, the width of the turbulent z
grows as a power law until the front ‘‘explodes’’ and th
turbulent phase fills the entire domain. Similar front exp
sions have been shown to exist in simulations of the
resonantly-forced CGL equation@31,32#, making it likely
that this phenomenon can be found in the laboratory.

Analysis of the front explosion suggests thatD53 is a
critical dimension. Consequently, it is of interest to exam
turbulent front dynamics in 3D systems, and this is the a
of this paper. The outline of the paper is as follows. In S
II, we introduce the relevant notation and sketch the analy
of the front explosion using a stochastic model@29# that
©2003 The American Physical Society03-1
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C. J. HEMMING AND R. KAPRAL PHYSICAL REVIEW E68, 026203 ~2003!
represents the front in terms of coupled left and right profi
that separate the turbulent phase from the homogen
phases. The structure and dynamics of turbulent fronts in
CML system in 3D geometries are discussed in Sec. III.
show that qualitative and quantitative characteristics of
front explosion differ from those in 2D geometries. The co
clusions of the investigation are given in Sec. IV where co
parisons with simulations of the front explosion in the CG
equation in 3D geometries are made.

II. TWO-DIMENSIONAL CML SYSTEM

The turbulent zone in the front shown in Fig. 1~left! is
separated from the homogeneous phases by left and
profileshL(y,t) andhR(y,t), respectively, which delimit the
left and right edges of the turbulent zone. Letting the va
of s in the uniform phases on the left~right! bes0

L(R) , where
s0

L(R)P$A,B,C%, then hL(R)(y,t) is defined to be the leas
~greatest! value of x such thatst(x,y,t)Þs0

L(R) . We define
the intrinsic width of the interface asD(y,t)[hR(y,t)
2hL(y,t) and the mean interface profile asS(y,t)
[@hR(y,t)1hL(y,t)#/2. Figure 1~right! shows these quan
tities for the system configuration of Fig. 1~left!. The mean
intrinsic width at timet, D̄(t)5L21(y51

L D(y,t), fluctuates
in time but is statistically stationary and has mean valueD0.

If one starts from initial conditions where the width of th
turbulent zone is greater than the mean intrinsic widthD0,
the homogeneous phases are observed to consume the
lent zone and its width shrinks untilD achieves the statisti
cally stationary valueD0. Based on this observation and th
front geometry in Fig. 1~right!, a coupled profile model wa
proposed in which the left and right Edwards-Wilkinso
~EW! fronts @33,34# interact with each other via a repulsiv
force @29#,

]hL~r ,t !

]t
5v1D¹2hL2FL~hR2hL!1jL~r ,t !, ~4!

FIG. 1. ~Left!: Interfacial structure in the 2D CML system, Eq
~2! and ~3!, for b52.545, a50.1, e50.173. The gray scale indi
cates the value of the order parameterst(r ). System size: 200
3200. ~Right!: Schematic depiction of the turbulent interfac
showing the quantitieshL , hR , andD, S for the system configu-
ration shown on the left.
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]hR~r ,t !

]t
52v1D¹2hR1FR~hR2hL!1jR~r ,t !. ~5!

Here,D andjL(R) are the diffusion coefficient and Gaussia
white noise terms that appear in the EW model for a dif
sively rough interface, andFL(R) are the repulsive forces tha
prevent the complete collapse of the turbulent zone. The
locity v is the mean velocity of an interface separating
semi-infinite turbulent phase from a semi-infinite unifor
phase; forv.0, the uniform phase is more stable and prop
gates into the turbulent phase, while forv,0 the turbulent
phase consumes the uniform phase. The front explosion
curs when the sign ofv changes from positive to negative
For v.0, the system is in the confined front regime; t
relative stability of the turbulent and uniform phases lea
the interfacial zone to shrink. The width of the interfaci
zone fluctuates about a mean intrinsic widthD0 determined
by a balance between the contraction due to the positive
of v and the repulsive force.

From this pair of equations, a closed evolution equat
for the intrinsic widthD(r ,t)5hR(r ,t)2hL(r ,t) of the form

]D~r ,t !

]t
52u1D¹2D1F~D!1j~r ,t ! ~6!

can be obtained@29#. Here,u52v, j5jR2jL , andF5FR
2FL . Introducing a bifurcation parameterl and defining
l.0 to correspond to the confined regime, asl→01, D0
diverges and the mean interface velocityv f ~the velocity of
the mean interfaceS) vanishes. Characteristic length, and
time scalest diverge at this nonequilibrium phase transitio
The following critical exponents may be introduced for t
behavior asl→01: a for the intrinsic width divergence
D0;l2a; n for the vanishing ofu52v, u;ln; b for the
spatial scale divergence,,;l2b; and z for the time scale
divergence,t;l2z.

Letting the dimensiond of a front in a system with di-
mensionD be d5D21, one may use scaling arguments
obtain these exponents. Assuming that the repulsive fo
has the formF(D)5c/Dh and requiring that Eq.~6! be in-
variant asl→01 leads to the following values for the criti
cal exponents:a5@(22d)/(21d)#n, b5@2/(21d)#n, z
5@4/(21d)#n. For d51, the exponents area5n/3, b
52n/3, andz54n/3. If ah,n the force term will diverge,
hence invariance requiresh>3n. Forh.3n, the force term
renormalizes to an infinite barrier atD50. This model
makes no prediction about the exponentn but simulations
show thatn51 for d51. For the 2D CML, the measure
values of the exponentsa, b, andz satisfied the predictions
of the coupled profile model@29#.

For fronts in 3D systems, the scaling exponents are p
dicted to bea50, b5n/2, and z5n. Regardless of the
value of h, ah50 and the force term renormalizes to b
come an infinite barrier atD50 and zero forD.0. Thus,
d52 is a critical dimension for this model and it is of inte
est to examine the nature of the front explosion in 3D s
tems where the interface has dimensiond52.
3-2
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FRONT EXPLOSIONS IN THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 026203 ~2003!
III. THREE-DIMENSIONAL CML SYSTEM

The simulations of the 3D, period-3 CML were perform
keeping the parametersa50.1, e50.117 fixed and the con
trol parameterb was varied. As for 2D, initial conditions
were chosen where uniform regions withs0(r ) equal to dif-
ferent points in the period-3 cycle of the local mapf of Eq.
~3! were separated by a zone of widthW, wheres0(r ) takes
on values randomly chosen from a uniform distribution
@0,1#. This initial condition rapidly relaxes to a turbulen
interface with intrinsic widthD'W.

Consider the behavior at valueb52.5476. If we start
from a thick initial random zone,W5100 or 200, the zone
shrinks until the intrinsic width is small,D̄(t)'528, after
which a statistically stationary state is achieved whereD̄(t)
fluctuates around a small mean value in this range. Figu
~left! shows some typical plots ofD̄(t) versust for realiza-
tions at this parameter value. For the 3D system, the fr
propagation is chosen to be in thez direction and the func-
tionshL , hR , S, andD depend on the spatial variablesx and
y as well as time. We continue to refer tohL as the left profile
and hR as the right profile even though in figures we sho
thez-axis pointing in the upwards direction. The statistica
stationary state, where the interfacial zone is thin and c
fined, is also reached from initial conditions with a thin ra
dom zone withW55. Figure 3 shows a typical thin interfac
for b52.5476.

A. Transient behavior and front collapse

In the 2D CML, collapse of turbulent fronts to period
attractors was observed for small system sizes@28#. The pe-
riods of these attractors could be quite large and the part
lar attractor to which the collapse occurred depended on
initial conditions. The average time for collapse to a perio
attractor was found to depend superexponentially on the
ear system dimension,tc;ec1L1.5

where c1 is a constant
@28#. Consequently, although the rough fronts observed
these systems are simply transients, for sufficiently large
tem sizes they are the only physically relevant states. A s
lar exponential dependence on the system size was foun
1D systems@27#. The CML model also exhibits stable chao
@27,35,36# since the largest Lyapunov exponent is negat
for the turbulent state, although this state has all the o

FIG. 2. D̄(t) vs t for realizations starting from random initia
conditions in the interfacial zone. System sizeL5100. Left: b
52.5476, initial random zone widthW5100 and 200. Right:b
52.548 24 andW55.
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characteristics of deterministic chaos such as rapid deca
correlations in space and time.

In 3D systems with small spatial extent normal to t
propagation direction, the thind52 interface eventually col-
lapses to a more regular state in which the intrinsic wid
D0'4. Figure 4~left! showsD̄(t) versust for a realization
in which this collapse happens. While we have not attemp
to determine if the collapsed state in the 3D system is p
odic, it is clear that the interface dynamics in the collaps
state are much simpler than in the confined turbulent st
The average lifetime of the turbulent state before collap
tc , is shown as a function ofL in Fig. 4 ~right! for a fixed
value of b52.5476. We find thattc increases with system
size astc;ec2L2.56

.
This behavior suggests that we can imagine the turbu

zone as being made up of some numberN(L) of independent
randomly evolving domains within which the spatiotempo
dynamics is strongly correlated. At the collapse point,
N(L) random processes must simultaneously take on
same value; hencetc;eN(L). The number of such statisti
cally independent domains should scale with the system
as N(L);Ld1z since the interface area in the dimensio
transverse to the front propagation direction increases aLd

and the contributionLz arises from the effective thickness o
the interface, depending on both the intrinsic width of t

FIG. 3. A confined interfacial zone in a system withb
52.5476 andL51200. The upper panel shows the left and rig
front profiles. The lower two panels are cross sections through
planesx5600 ~middle! and y5100 ~bottom!; the horizontal scale
has been compressed by a factor of 2 in these panels.

FIG. 4. Left: Intrinsic widthD̄(t) vs t for a realization in which
the collapse from the confined turbulent state occurs. Parame
b52.5476, system sizeL555; Right: Plot of lntc againstL21z,
where z50.56, with b52.5476. The dashed best-fit line is lntc

51.52310243L21z16.96.
3-3
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C. J. HEMMING AND R. KAPRAL PHYSICAL REVIEW E68, 026203 ~2003!
interface and the roughness of the profile.
These results show that the transient turbulent fronts w

superexponentially long lifetimes are the relevant syst
states also in sufficiently large 3D systems.

B. Front explosion in 3D

From observations of the contraction of the interfac
zone like those shown in Fig. 2~left!, the mean contraction
velocity u52^dD̄/dt&, where the averagê•& is taken over
time and realizations of the evolution process, may be de
mined. With this definition,u has the same meaning as in E
~6! of the coupled profile model. Measuringu as a function
of b at a fixed system sizeL, we see in Fig. 5 that asb
increases, the contraction rateu passes through zero a
b* (L). For b.b* (L), the turbulent zone grows rather tha
shrinks. Figure 2~right! shows typicalD̄(t) versust curves
for a few realizations at ab value within the expanding in
terface regime whereb.b* (L) andu,0. As for a contract-
ing interfacial zone,u can be estimated from the linea
growth of D̄(t).

From Fig. 5, we findb* (100).2.547 87 andb* (800)
.2.547 83 indicating a weak dependence onL. To further
investigate the system size dependence, Fig. 6 plotsuuu ver-
susL for two values ofb in the contracting and expandin
regimes. ForL.400, uuu is independent ofL showing that,
for large enough systems, anL-independent critical valueb*
can be defined.

Sinceu,0 for b.b* (L), the intrinsic widthD̄(t) will
grow without bound. Consistent with this, in simulations, w
see no sign of saturation of the intrinsic width whenu,0.
Figure 7 shows the typical structure of an expanding inte
cial zone.

One can see in Fig. 2~right! that the state whereD̄(t)
grows linearly in time is preceded by a transient confin

FIG. 5. Interface velocityu vs b in systems of sizeL5100
~filled circles! and L5800 ~open circles!. The solid line isu5
20.805 2593(b22.547 87); this is the linear term of a cubic poly
nomial fit to theL5100 data in the interval 2.5478<b<2.548. The
dashed line has equationu520.970 983(b22.547 83) and is the
linear term of the cubic fit to theL5800 data. The dotted line
indicatesu50.
02620
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state in whichD̄(t)'5 –8 and fluctuates around an avera
valueDm . We define the lifetimetm of this metastable con
fined state to be the largestt for which D̄(t)58, a value
slightly larger than the mean intrinsic widthDm . We let t̄m
be the average oftm over realizations. The average lifetim
t̄m decreases asb increases and we move farther into th
expanding regime~Fig. 8, right!. For b only slightly greater
thanb* (L), the lifetime of the metastable confined state c
be quite long@37#. As the system size increases,t̄m decreases
~Fig. 8, left!.

The fact thatdD̄(t)/dt does not depend onD̄(t) for suf-
ficiently large front profile separations suggests that ther
no interaction between the left and right profiles for lar
distances. The center of mass position of the mean fr
profile S̄(t)5L22(x,y51

L S(x,y,t) can have a nonzero ne
velocity only when the left and right profiles interact. Figu
9 showsD̄(t) andS̄(t) versust for a realization of the front

FIG. 6. Dependence ofuuu on system sizeL for b52.5481
~filled circles! and b52.5476 ~open circles!. For b52.5481, u
,0; for b52.5476,u.0. The smooth curves plotted through th
data are guides to the eye.

FIG. 7. The interfacial zone in a system withb52.5479 andL
5400. The upper panel shows the left and right interface profi
The arrow indicates the planex5199. The lower panel is a cros
section through this plane.
3-4
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FRONT EXPLOSIONS IN THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 026203 ~2003!
evolution process. We see that in the metastable confi
state, the average center of mass velocity is a nonzero v
but when the transition to the state of linear expansion
curs, the average center of mass velocity falls to zero.

For the 2D CML, the intrinsic widthD0 diverges asb
→b* 2. In contrast, for the 3D CML, the transition is dis
continuous, at least for finite system sizes:D0 remains finite
for b<b* (L) and infinite forb.b* (L). Forb.b* (L), it is
possible to measure the average ofD in the metastable con
fined state,Dm . Figure 10 showsD0 andDm as a function of
b. The results in this figure demonstrate that the characte
the front explosion is qualitatively different in the 2D and 3
CML systems, and this is one of the important observati
of this study.

C. L dependence of interfacial properties

The coupled profile model used to analyze the front
plosion was based on the observation that the interfaces
separated the turbulent zone from the homogeneous ph
satisfied EW scaling@29#. The interfacial profile widths are
defined as

^wI&~ t !5K L2dS (
(x,y)

~hI~x,y,t !2h̄I~ t !!2D 1/2L , ~7!

whereI 5L,R, the sums are taken over all (x,y),

h̄~ t !5L2d (
(x,y)

hI~x,y,t ! ~8!

FIG. 8. Left: Dependence of the mean lifetime of the confin

state,t̄m on system sizeL in simulations withb52.548 05. Right:

Dependence oft̄m on the parameterb for system sizeL5200.

FIG. 9. Plot of D̄(t) ~lower curve, left-hand ordinate! and the

center-of-mass positionS̄(t) ~upper curve, right-hand ordinate! vs t
for a realization in a system of sizeL5150 with b52.5481.
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is the mean profile position at timet for a particular realiza-
tion, and the averagê•& is taken over realizations. The lead
ing ~right! profile widths^wR& for b in the expanding~E! and
contracting~C! regimes are plotted in Fig. 11 as a function
L. For comparison, we also show the corresponding wi

FIG. 10. Average intrinsic widthD0 vs b2b* (L) in the con-
fined regimeb,b* (L), and average intrinsic widthDm for the
metastable confined state in the expanding regimeb.b* (L),
whereb* (L) is the critical parameter value for the front explosio
transition. Values for 3D systems withL5100, for which
b* (100)52.547 87, are shown by filled circles forb,b* (100) and
by open circles forb.b* (100) while data forL5800, for which
b* (800)52.547 83, are shown as open squares. Values for 2D
tems with L5100 ~open triangles! and L5800 ~asterisks!, for
which b* 52.545 662~independent ofL) are also shown for com-
parison. Smooth curves have been fit through the 3D data as gu
to the eye; the fit to the two-dimensional data indicates power
divergence with exponent21/3.

FIG. 11. Plot in logarithmic coordinates of the average width
the leading interface profile against system sizeL. The curves are
labeled indicating the system’s dimensionality, and whether thb
value lies within the confined~C! or expanding~E! regime. For 3D
systems,̂wR& is shown for the parameter valuesb52.5476@C~3D!,
filled circles# andb52.5481@E~3D!, open circles#. A smooth curve
is plotted as a guide to the eye for theC~3D! data. The straight lines
have slopes 0.35 and 0.09, respectively, for these two param
values. TheC~3D! straight line is obtained from a fit to the data fo
L>1000. For two-dimensional systems,^wL& is shown for b
52.545 @C~2D!, asterisks# and b52.54575@E~2D!, crosses#. The
straight lines have slopes 0.51 and 0.44, respectively, for these
parameter values.
3-5



e
a

n

te
th

t
in
y
W
e
p-
a
d
W

s-
am
-
er

s
y
h
an

r

o

d

o
.

l

n
del
ded-
l

D
n
to

the
d
tly

D
nsi-
b-

s-
au

d-3
nt
di-
ing
rre-
ed
hy,
s to
ults
ch
ut

tt

ents
is

C. J. HEMMING AND R. KAPRAL PHYSICAL REVIEW E68, 026203 ~2003!
data for 2D systems. The profile width data for 3D confin
fronts @C~3D!# show a crossover, for system sizes larger th
approximatelyL5600, to a scaling form̂wR&;L0.35, which
is close to the exponent of 0.38 for Kardar-Parisi-Zha
~KPZ! fronts in 3D (d52) systems@38,39#. The 2D data
@C~2D!# show no such evidence of a crossover in this sys
size range. In contrast, the expanding front profile wid
@E~3D!# show a very weak power law behavior̂wR&
;L0.09, reasonably close to the EW prediction of lnL behav-
ior. In summary, for 2D systems, in the chosen parame
range, the front profiles approximately satisfy EW scaling
both the confined and expanding front regimes. For 3D s
tems, the front profiles in the expanding regime satisfy E
scaling approximately; however, the profiles of the confin
fronts show strongL dependence with a crossover to a
proximate KPZ scaling for largeL. These results signal
change in behavior ford52 as predicted by the couple
profile model but the results further indicate that the E
coupled profile model should lose its validity for thed52
confined fronts in 3D systems.

The intrinsic width of the confined fronts in the 3D sy
tem has only a weak dependence on the bifurcation par
eter~see Fig. 10!. However, like the profile width, the intrin
sic width exhibits a strongL dependence and crossov
behavior. The mean intrinsic interface widthD0 and the cen-
ter of mass interface velocityv f were measured as function
of system sizeL ~Fig. 12, left and right panels, respectivel!
for two values ofb for which confined interfaces exist. Eac
of these properties shows different behaviors at small
large system sizes, with the crossover between the two
gimes occurring atL'600.

Whether or not, there is a phase transition between c
fined and exploding interface regimes in the limitL→` de-
pends on whether lim

L→`
D0 is finite. The results presente

in Fig. 12 ~left! do not allow a definitive prediction as t
whetherD0 remains bounded or diverges asL becomes large
In numerical simulations of Eq.~6! of the coupled profile
model, where the repulsive forceF is taken to be a hard wal
repulsion,

F~D!5H `, D<0

0, D.0,
~9!

FIG. 12. Dependence on system sizeL for mean intrinsic width
D0 ~left! and center-of-mass velocityv f ~right!. Data are shown for
b52.547~filled circles! andb52.5476~open circles!. Errorbars on
data points are smaller than the marker circles. The curves plo
through the data are guides to the eye.
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the average intrinsic widthD05^D&, where ^•& is a spa-
tiotemporal average, is independent ofL asL becomes large.
The left and right profiles in the CML do not interact whe
their separation is sufficiently large, and therefore this mo
should capture the essential features affecting the boun
ness or divergence ofD0 as L becomes large. This mode
predicts thatD0 remains bounded asL→`.

IV. CONCLUSIONS

The manner in which the front explosion occurs in the 3
period-3 CML system is qualitatively different from that i
2D systems. In 2D, the interface width diverges according
a power law as the transition point is approached from
confined front side of the bifurcation, but in 3D, for a fixe
system size, the front explosion transition occurs direc
from a finite value ofD0(L). If the intrinsic width remains
finite as L→`, as suggested by the analysis of the 3
coupled profile model, one expects a first-order phase tra
tion in this limit in contrast to the continuous transition o
served in the 2D CML.

The scaling properties of the front explosion were inve
tigated for the 2D 3:1 resonantly forced Ginzburg-Land
equation in the Benjamin-Feir unstable regime@31,32#. Al-
though the scaling exponents differed, both the 2D perio
CML and 2D 3:1 forced CGL systems showed similar fro
explosion phenomenology and, in particular, power law
vergence of the intrinsic width. Consequently, it is interest
to compare the results obtained in this study with the co
sponding front explosion phenomenon in the 3D 3:1 forc
CGL system. Simulations of the front explosion are lengt
requiring large 3D system sizes and long integration time
carry out the statistical averages. Consequently, our res
are limited in scope. Figure 13 shows the results of su
simulations for the 3D 3:1 forced CGL equation carried o
for a system with a turbulent front propagating along thez
direction. As in earlier studies in 2D@31,32#, a moving frame
with no-flux boundary conditions alongz and periodic
boundary conditions alongx and y was used. Simulations

ed
FIG. 13. Average intrinsic widthD0 vs g2g* for the 2D 3:1

forced complex Ginzburg-Landau equation~hollow squares! and
3D ~filled circles!. For 2D, g* 50.458, for 3D,g* 50.520. The
smooth curves represent power law divergence with expon
20.49 for 2D and20.33 for 3D. The exponent for the 3D curve
obtained from a fit to the data forg2g* <0.005.
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were carried out for a single system size with linear dim
sionL550 alongx andy. The results of an earlier 2D stud
carried out in systems of sizeL5200, are also shown in th
figure for comparison. In contrast to the CML results whi
indicate a different front explosion character in 2D and
dimensions, the 3:1 forced CGL results show power law
vergence as a function of the forcing intensityg in both 2D
and 3D, although the exponents are different@D0;(g
2g* )20.49 and D0;(g2g* )20.33 in 2D and 3D systems
respectively#. These differences are likely due to the differe
nature of the correlations in the turbulent state in the C
and forced CGL systems as well as the fact that the fr
profiles separating the turbulent and homogeneous states
have different character, exhibiting EW scaling for the CM
and KPZ scaling for the forced CGL equation.

The CML system and the forced CGL equation share g
eral qualitative features but differ in other respects such
the nature of the nonlinearity giving rise to turbulence. T
turbulent state in the CML possesses a negative max
Lyapunov exponent, while in forced CGL equation the ma
tt

ic
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mal Lyapunov exponent associated with the turbulence
positive, although the 2D results suggest that this differe
does not affect the existence of the front explosion pheno
enon. Both the systems possess both a turbulent state a
spatially uniform state which is stable to inhomogeneous p
turbations. When the relative stability of these two sta
changes, the front explosion occurs.

The results of this study should provide additional stim
lus for further investigations, both theoretical and expe
mental, of the nature of nonequilibrium phase transitions
resonantly forced oscillatory media. Since 2:1, 3:1, and
resonantly forced reaction-diffusion systems have been
vestigated experimentally@11–13#, these systems are likel
candidates for the observation of turbulent fronts.
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